Price: $65.99 - $39.49
(as of Apr 15, 2025 08:32:55 UTC – Details)
This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools–useful whether you work with Windows, macOS, or Linux.
You’ll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you’re comfortable processing data with Python or R, you’ll learn how to greatly improve your data science workflow by leveraging the command line’s power. This book is ideal for data scientists, analysts, engineers, system administrators, and researchers.
Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTML, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create your own tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, regression, and classification algorithms Leverage the command line from Python, Jupyter, R, RStudio, and Apache Spark
From the brand
Explore more Data Science
Start learning with O’Reilly
More From O’Reilly
Sharing the knowledge of experts
O’Reilly’s mission is to change the world by sharing the knowledge of innovators. For over 40 years, we’ve inspired companies and individuals to do new things (and do them better) by providing the skills and understanding that are necessary for success.
Our customers are hungry to build the innovations that propel the world forward. And we help them do just that.
Publisher : O’Reilly Media; 2nd edition (September 21, 2021)
Language : English
Paperback : 280 pages
ISBN-10 : 1492087912
ISBN-13 : 978-1492087915
Item Weight : 1 pounds
Dimensions : 7 x 0.59 x 9.19 inches